Dr Kumar Chinta Professor Department Of Community Medicine Narayana Medical College Nellore

Contents

- Introduction
- Quantitative variable
- Correlation
- Dependent and independent variable
- Methods of correlation analysis
- Types of correlation
- Working on Excel
- Summary

Introduction

- Correlation Analysis Is a method of bivariate statistical analysis
- Used to study the relationship between two quantitative variables
- Studies the direction and magnitude of correlation

Correlation Analysis Quantitative Variable?

 Variables are measured on quantitative scale or qualitative scale

S .No	Sex	Weight in kgs
1	Μ	50
2	F	55
3	F	60
4	Μ	50

Correlation Analysis What is correlation?

Distribution of children by age and weight

Age	Weight
Birth	2.6
3 mts	5.3
6 mts	6.7
9 mts	7.4
lyr	8.4
2 yrs	10.1
3 yrs	11.8
4 yrs	13.5
S yrs	14.8
6 yrs	16.3
7 yrs	18
8 yrs	19.7
9 yrs	21.5
10 yrs	23.5

Correlation Analysis What is correlation?

Distribution of children by age and weight

Age	Weight
Birth	2.6
3 mts	5.3
6 mts	6.7
9 mts	7.4
lyr	8.4
2 yrs	10.1
3 yrs	11.8
4 yrs	13.5
S yrs	14.8
6 yrs	16.3
7 yrs	18
8 yrs	19.7
9 yrs	21.5
10 yrs	23.5

This phenomenon of change in magnitude of one variable with a change in the magnitude of the other associated variable is called **correlation**

Correlation Analysis Dependent & independent variable ?

Distribution of children by age and weight

Age	Weight
Birth	2.6
3 mts	5.3
6 mts	6.7
9 mts	7.4
lyr	8.4
2 yrs	10.1
3 yrs	11.8
4 yrs	13.5
S yrs	14.8
6 yrs	16.3
7 yrs	18
8 yrs	19.7
9 yrs	21.5
10 yrs	23.5

In correlation out of two associated variables one is the **dependent** variable while the other is **independent** variable

In medical research and epidemiology the independent

variable is also called predictor variable /exposure variable,

while the dependent variable is known as **outcome/effect**

variable

Methods

1) Scatter Plot

2) Correlation Coefficient

Correlation Analysis Scatter plot

- Linear correlation
- Non-linear correlation

Graph of the growth of Boston schoolchildren in height and weight

Mean FVC and mean FEV₁ by age group and sex

- Positive Correlation x¹ x¹
- Negative Correlation x[↑] y
- No Correlation

Positive Correlation

Negative Correlation

No Correlation

Correlation coefficient

- It is a constant calculated using mathematical formula to quantify the relationship
- It explains the degree and direction of correlation
- The most commonly used correlation coefficient is Karl Pearson's correlation coefficient
- It is denoted by letter 'r'
- Its value ranges from +1 through 0 to -1
- The other correlation coefficients are
- Spearman's rank cc
- Kendall tau rank cc
- Cramer's correlation

Pearson correlation coefficient

$$r = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2} \sqrt{(Y - \overline{Y})^2}}$$

Where, \overline{X} = mean of X variable \overline{Y} = mean of Y variable

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2 - (\Sigma x)^2][n\Sigma y^2 - (\Sigma y)^2]}}$$

Example question: Find the value of the correlation coefficient from the following table:

SUBJECT	AGE X	GLUCOSE LEVEL Y
1	43	99
2	21	65
3	25	79
4	42	75
5	57	87
6	59	81

Step 1: Make a chart. Use the given data, and add three more columns: xy, x², and y².

SUBJECT	AGE X	GLUCOS E LEVEL Y	ХҮ	X ²	γ2
1	43	99			
2	21	65			
3	25	79			
4	42	75			
5	57	87			
6	59	81			

Step 2: *Multiply x and y together to fill the xy column.*

SUBJECT	AGE X	GLUCOS E LEVEL Y	ХҮ	X ²	Y ²
1	43	99	4257		
2	21	65	1365		
3	25	79	1975		
4	42	75	3150		
5	57	87	4959		
6	59	81	4779		

Step 3: Take the square of the numbers in the x column, and put the result in the x^2 column.

SUBJECT	AGE X	GLUCOS E LEVEL Y	ХҮ	X ²	γ2
1	43	99	4257	1849	
2	21	65	1365	441	
3	25	79	1975	625	
4	42	75	3150	1764	
5	57	87	4959	3249	
6	59	81	4779	3481	

Step 4: Take the square of the numbers in the y column, and put the result in the y^2 column.

SUBJECT	AGE X	GLUCOS E LEVEL Y	ХҮ	X ²	γ2
1	43	99	4257	1849	9801
2	21	65	1365	441	4225
3	25	79	1975	625	6241
4	42	75	3150	1764	5625
5	57	87	4959	3249	7569
6	59	81	4779	3481	6561

Step 5: Add up all of the numbers in the columns and put the result at the bottom of the column.

SUBJECT	AGE X	GLUCOS E LEVEL Y	XY	X ²	γ2
1	43	99	4257	1849	9801
2	21	65	1365	441	4225
3	25	79	1975	625	6241
4	42	75	3150	1764	5625
5	57	87	4959	3249	7569
6	59	81	4779	3481	6561
Σ	247	486	20485	11409	40022

• **Step 6:** Use the following correlation coefficient formula.

$$\mathbf{r} = \frac{\mathbf{n}(\boldsymbol{\Sigma}\mathbf{x}\mathbf{y}) - (\boldsymbol{\Sigma}\mathbf{x})(\boldsymbol{\Sigma}\mathbf{y})}{\sqrt{\left[\mathbf{n}\boldsymbol{\Sigma}\mathbf{x}^2 - (\boldsymbol{\Sigma}\mathbf{x})^2 \right] \left[\mathbf{n}\boldsymbol{\Sigma}\mathbf{y}^2 - (\boldsymbol{\Sigma}\mathbf{y})^2 \right]}}$$

• The answer is: 2868 / 5413.27 = 0.529809

Significance test

 To test whether the association is merely apparent, and might have arisen by chance use the t test

$$t = r \sqrt{\frac{n-2}{1-r^2}}$$

- DF = n-2
- N = number of pairs
- If the calculated t value is more than table t value the correlation is significant

- Calculated t- value is 1.2493
- DF = 4
- Table t-value is 2.766 at 0.05 probability
- The calculated t- value is less than table t- value at 0.05 probability and 4 degrees of freedom the correlation is statistically not significant

Drawing Scatter Plot and calculating Correlation Coefficient in MS-Excel

Correlation Analysis Summary

- Correlation analysis is a method of bivariate statistical analysis
- Used to study the relationship between two quantitative variables
- Studies the direction and magnitude of correlation
- Correlation analysis is done by scatter plot and correlation coefficient
- CC calculates precisely the degree of correlation

Correlation Analysis Take home message

Correlation analysis is used to study the relationship

between two quantitative variables and this can be

done using MS-Excel software

Thank you