Measures of central tendency

Dr.K.Vyshnavi, Assistant professor, Dept. of community medicine, Narayana Medical college.

Contents

- Average or central value
- Measures of central tendency
- Mean
- Median
- Mode

Average (central value)

- It is the one around which all other values are dispersed or distributed
- In most of the data, average is at the centre of concentration of values
- It carries the important properties of data
- Central tendency-the statistical measure that identifies a single value, as a representative of an entire distribution
- Ex: average marks of students in final MBBS Average number of persons visiting hospital per day

Desirable properties of a measure of central tendency:

- 1.should be rigidly defined
- 2.computation should be based on all observations
- 3.least affected by extreme observations
- 4.should be capable of further mathematical assessment

Uses:

- 1. To find out whether an observation is normal
- 2. To compare the two groups
- Mostly used to assess what is normal in health like height, birth weight, pulse rate etc.
- Normal is not just the mean or central value but accepted range of variation on either side of mean

Different measures of central tendency

- Mean (arithmetic mean)
- Median
- Mode
- Geometric mean
- Harmonic mean

Mean

- It implies arithmetic average.
- It is sum of all observations divided by number of observations.
- The most common measure of central tendency
- It is denoted by \overline{x} .

x = <u>sum of observations</u> number of observations

For ungrouped data

- Ex: weights in kgs of 10 children aged 2 years are given below calculate mean
- > 9,11,10,9,12,8,9,11,10,9
- Mean=<u>9+11+10+9+12+8+9+11+10+9</u> 10 =98/10=9.8 kg

Assumed mean method:

 Used when the observations are large in size and labourious to calculate manually

Steps in calculation:

- 1.assume arbitrary mean/assumed mean(choose any observation from given data)
- 2.Subtract this value from all the given observations
- 3.We get differences

- 4.obtain mean for the differences by usual method
- 5. calculation of actual mean by adding the mean of differences with assumed mean

Ex: In a series of 10 postmortems following observations regarding weight of liver(gms) were found. calculate average weight of liver

- 1420,1405,1425,1410,1415,1435,1430,141
 5, 1445,1430
- Arbitrary mean=1420
- subtraction:(1420-1420),(1405-1420),(1425-1420).....(1430-1420)

- Differences=0,-15,5,-10,-5,15,10,-5,25,10
- Mean of differences=30/10=3
- Thus actual mean $\overline{x} = 1420 + 3 = 1423$

weight	Wt-assumed mean
1420	0
1405	-15
1425	5
1410	-10
1415	-5
1435	15
1430	10
1415	-5
1445	25
1430	10
	Sum=30

Mean for difference=30/10=3 Actual mean=1420+3=1423

For grouped data,

- 1. Discrete frequency distribution
- if we have x₁,x₂,x₃.....x_n observations with corresponding frequencies f₁,f₂,f₃,.....f_n
- Arithmetic mean is calculated as,

$$\overline{x} = \underbrace{f_{1}x_{1} + f_{2}x_{2} + f_{3}x_{3} + \dots + f_{n}x_{n}}_{f_{1} + f_{2} + f_{3} + \dots + f_{n}}$$

Ex: calculate the average number of children per family from following data.

No. of children	No. of families
0	30
1	52
2	60
3	65
4	18
5	10
6	5

No. of children(x)	No. of families(f)	Total no. of children(fx)
0	30	0
1	52	52
2	60	120
3	65	195
4	18	72
5	10	50
6	5	30
Total	240	519

$$x = 519/240 = 2.16$$

2. continuous frequency distribution

In continuous frequency distribution(class interval), frequency is not associated with single value but spread over the entire class

steps in calculation,

- Write all the class intervals in first column and corresponding frequency(f) in second column
- Calculate mid value of each class interval, enter in third column(x)
- Multiply f and x, write in fourth column

•
$$\overline{x} = \underline{sum(fx)}$$

sum(f)

Ex: calculate the arithmetic mean of marks obtained in biostatistics course

Marks	no. of students
40-49	4
50-59	6
60-69	16
70-79	22
80-89	9

Marks	no. of students (f)	Mid value of class interval (x)	fx
40-49	4	44.5	178
50-59	6	54.5	327
60-69	16	64.5	1032
70-79	22	74.5	1639
80-89	9	84.5	760.5
	Sum $f = 57$		Sumfx=3936.5

 $\overline{x} = 3936.5 / 57 = 69.06$

Summary of calculation of mean

1.Ungrouped series. 2.Grouped series. Ungrouped series 1.Direct. 2.Indirect. If the size of observations is small, then go for, direct method Grouped series-discrete frequency distribution -continuous frequency

distribution

Merits and demerits

Merits :

- I. easy to calculate and understand
- > 2. it is based on all observations
- 3.most familiar to common man and rigidly defined
- 4.capable of further mathematical assessment

Demerits :

- I.used only for quantitative data
- > 2.unduly affected by extreme values

Median

- > This is the next common measure after mean
- It is the value of middle observation after placing the observations in either ascending or descending order.
- > Half the values lie above it and half below it.
- If n is odd, the median is the middle number.
 i.e= (n+1/2)th observation

- If n is even, the median is the average of the two middle numbers
- Median=

(value of(n/2)thob+ value of(n/2+1)thob)

2


Advantages:

1.can be applied for qualitative and quantitative data.

2. Not affected by extreme values

Measures of Central Tendency: The Median

 In an ordered array, the median is the "middle" number (50% above, 50% below)

Not affected by extreme values

Ex: To find the median of 4,5,7,2,1

- Step 1 :Arrange the numbers in ascending order. 1,2,4,5,7
- <u>Step 2</u>: The total elements in the distribution (5) is odd.
- The middle position can be calculated using the formula. (n+1)/2

So the middle position is (5+1)/2 = 6/2 = 3The number at 3rd position is = Median = 4 **Ex**: find the median of 5,7,2,1,6,4. step 1: arrange the numbers in ascending order.

1,2,4,5,6,7.

step 2: the total numbers in the distribution is 6

(even).

so the average of two numbers which are respectively in positions n/2 and (n/2)+1 will be the median of the given data.

Median = (4+5)/2 = 4.5.

For grouped data,(class intervals)

- 1.obtain class boundaries
- 2.calculate cumulative frequencies
- 3.calculate N/2 value=sumf/2(N=sum of freq)
- 4.locate the class interval with a cumulative frequency equal to or just more than N/2 value.(median lies in this class interval)
- 5.apply the formula

• Median=I+(N/2-cf) ×h

I=lower boundary of median class

N=sum of frequencies

cf=cumulative freq which is previous to median class

f= frequency of median class h=width of class interval Ex: find the median weight of 590 infants born in a hospital, in one yr

Weight of infant in kg	No of infants
2.0-2.4	37
2.5-2.9	117
3.0-3.4	207
3.5-3.9	155
4.0-4.4	48
4.5 and above	26

Class boundaries	No of infants(f)	Cumulative freq
1.95-2.45	37	37
2.45-2.95	117	154
2.95-3.45	207	361
3.45-3.95	155	516
3.95-4.45	48	564
4.45 and above	26	590
	Sum f=N=590	

N/2=295,I=2.95,cf=154,f=20 7,h=0.5

Median=2.95+((295-154)/207*0.5)=3.29 kg

Mode

- The observation which occurs most frequently in a data series
- less commonly used
- Ex: Diastolic B.P values of 9 individuals is given below. Find mode
- 86,76,80,86,70,96,86,76,86
- Mode=86

- For a given data mode may not exist or it may not be unique
- Ex:5,8,6,9,2,7-no mode
- 10,18,25,9,25,9,8-2 modes

- Geometric mean: when data contains a few extremely large or small data or when the values change exponentially, we can use geometric mean
- For n observations it is measured as nth root of product of n observations.
- May reduce to zero if any observation is zero
- Harmonic mean: it is the reciprocal of arithmetic mean of reciprocal observations
- HM = n/(1/x)

Selecting the appropriate measure: Median is preferred to mean,

- Extreme scores in the distribution
- Data is measured in ordinal scale
 Mode is a preferred data,
- Data is measured in nominal scale
 Geometric mean is preferred
- When data are measured in logarithmic scale

conclusion

- Various measures of central tendency
- How to calculate mean for ungrouped data and grouped data
- How to calculate median
- Mode
- Selecting an appropriate measure

 Ex: The cholesterol levels of 10 persons are given below. calculate mean value 260,200,240,240,260,150,220,190,210,200